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Subject	Recruitment	7 

Poly(A)	selected	RNA-Seq	samples	(n=38).	 In	this	analysis,	we	used	a	subset	of	Puerto	8 

Rican	 Islanders	 recruited	 as	 part	 of	 the	on-going	Genes-environments	&	Admixture	 in	9 

Latino	Americans	study	(GALA	II)	3–6.	We	classified	asthma	by	physician	diagnosis	and	the	10 

presence	of	at	least	two	symptoms	(wheezing,	coughing,	or	shortness	of	breath)	during	2	11 

years	 prior	 to	 the	 enrollment.	 All	 study	 subjects	 had	 no	 history	 of	 smoking	 or	 recent	12 

(within	 4	 weeks	 of	 recruitment)	 nasal	 steroid	 use.	 The	 study	 was	 approved	 by	 local	13 

institutional	 review	boards,	and	written	assent/consent	was	received	 from	all	 subjects	14 

and,	if	applicable,	parents	of	subjects	under	the	age	of	legal	consent.		15 

	16 

Ribo-Zero	 RNA-Seq	 samples	 (n=49).	 Via	 community-based	 advertising,	 we	 recruited	17 

adults	 aged	 18-70	 years	 to	 participate	 in	 a	 study,	 in	 which	 they	 underwent	 research	18 

bronchoscopy.	The	study	was	approved	by	the	University	of	California	at	San	Francisco	19 

Committee	 on	 Human	 Research.	 Written	 informed	 consent	 was	 obtained	 from	 all	20 

subjects,	and	all	studies	were	performed	in	accordance	with	the	principles	expressed	in	21 

the	Declaration	of	Helsinki.	22 
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	23 

Sample	Collection	24 

Poly(A)	selected	RNA-Seq	samples	(n=38).	Methods	for	nasal	epithelial	cell	collection	and	25 

processing	are	described	in	Poole	et	al.	6.	Briefly,	nasal	epithelial	cells	were	collected	from	26 

behind	the	inferior	turbinate	with	a	cytology	brush	using	a	nasal	illuminator.	The	collected	27 

brush	was	submerged	in	a	mixture	of	RLT	Plus	lysis	buffer	and	beta-mercaptoethanol,	and	28 

frozen	at	-80	C	until	extraction	was	performed	with	a	Qiagen	Allprep	RNA/DNA	extraction	29 

kit	(Qiagen,	Valencia,	CA).	We	collected	10ml	of	whole	blood	using	PAXgene	RNA	blood	30 

tubes	(PreAnalytiX,	Valencia,	CA)	and	isolated	RNA	using	PAXgene	RNA	blood	extraction	31 

kits,	 according	 to	 the	manufacturers’	 protocol.	 Portions	 of	 the	 nasal	 airway	 epithelial	32 

whole	transcriptome	data	were	published	in	a	previous	manuscript	6.	33 

	34 

Ribo-Zero	RNA-Seq	 samples	 (n=49).	During	 bronchoscopy	 airway	 epithelial	 brushings,	35 

samples	were	 obtained	 from	 3rd-4th	 generation	 bronchi.	 RNA	was	 extracted	 from	 the	36 

epithelial	 brushing	 samples	 using	 the	 Qiagen	 RNeasy	 mini-kit	 (Qiagen,	 Valencia,	 CA),	37 

according	to	manufacturer’s	protocol.		38 

	39 

Whole	Transcriptome	Sequencing	40 

Poly(A)	selected	RNA-Seq	samples	(n=38).	We	constructed	Poly-A	RNA-seq	libraries	using	41 

500	ng	of	blood	and	nasal	airway	epithelial	total	RNA	from	9	atopic	asthmatics	and	10	42 

non-atopic	controls.	Libraries	were	constructed	and	barcoded	with	the	Illumina	TruSeq	43 
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RNA	Sample	Preparation	v2	protocol.	Barcoded	nasal	airway	RNA-seq	libraries	from	each	44 

of	the	19	subjects	were	pooled	and	sequenced	as	2	x	100bp	paired-end	reads	across	two	45 

flow	cells	of	an	Illumina	HiSeq	2000.	Barcoded	blood	RNA-seq	libraries	from	each	of	the	46 

19	subjects	were	pooled	and	sequenced	as	2	x	100bp	paired	end	reads	across	4	lanes	of	47 

an	Illumina	HiSeq	2000	flow	cell.		48 

	49 

Ribo-Zero	RNA-Seq	samples	(n=49).	We	used	100ng	of	isolated	RNA	from	a	total	of	61	50 

samples	 to	 construct	 ribo-depleted	RNA-seq	 libraries	 using	 the	 TruSeq	 Stranded	 Total	51 

RNA	 with	 Ribo-Zero	 Human/Mouse/Rat	 library	 preparation	 kit,	 per	 manufacturer’s	52 

protocol.	 Barcoded	 bronchial	 epithelial	 RNA-seq	 libraries	 were	 multiplexed	 and	53 

sequenced	as	2	 x	100bp	paired	end	 reads	on	an	 Illumina	HiSeq	2500.	On	average,	 37	54 

million	reads	were	generated	per	sample.	We	excluded	12	samples	from	further	analyses	55 

due	to	high	ribosomal	RNA	read	counts	(library	preparation	failure),	leaving	a	total	of	49	56 

samples	suitable	for	further	analyses.	57 

	58 

GTEx	RNA-Seq	data	59 

We	used	RNA-Sequencing	data	from	Genotype-Tissue	Expression	study	(GTEx	Consortium	60 

v.6)	 corresponding	 to	 8,555	 samples	 collected	 from	 544	 individuals	 from	 53	 tissues	61 

obtained	from	Genotype-Tissue	Expression	study	(GTEx	v6).	RNA-Seq	data	is	from	Illumina	62 

HiSeq	sequencing	of	75	bp	paired-end	reads.	The	data	was	derived	from	38	solid	organ	63 

tissues,	11	brain	subregions,	whole	blood,	and	three	cell	lines	of	postmortem	donors.	The	64 

collected	 samples	 are	 from	 adults	 matched	 for	 age	 across	 males	 and	 females.	 We	65 
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downloaded	 the	 mapped	 and	 unmapped	 reads	 in	 BAM	 format	 from	 dbGap	66 

(http://www.ncbi.nlm.nih.gov/gap).	67 

	68 

SRA	RNA-Seq	data	69 

Samples	(n=2000)	were	randomly	selected	using	SQLite	database	from	R/Bioconductor	70 

package	SRAdb	(https://bioconductor.org/packages/release/bioc/html/SRAdb.html).	We	71 

have	 used	 a	 script	 from	72 

https://github.com/nellore/runs/blob/master/sra/define_and_get_fields_SRA.R	 to	73 

select	 run_accessions	 from	the	sra	table	with	platform	=	 ’ILLUMINA’,	library_strategy	=	74 

’RNA-Seq’,	and	taxon_id	=	9606	(human).		75 

	76 

Workflow	to	categorize	the	mapped	reads	77 

	78 
	79 
Data	preparation		80 
	81 
ROP	assumes	that	Illumina	adapter	sequences	were	deleted	from	the	input	sequencing	82 
data.	83 
	84 

Map	reads	onto	human	genome	and	transcriptome		85 

	86 
We	used	standard	read	mapping	procedures	to	obtain	mapped	and	unmapped	reads	87 

from	all	three	data	sources.	Read	mapping	for	GTEx	data	was	performed	by	the	GTEx	88 

consortium	using	TopHat2	7.	Following	the	GTEx	consortium	practice,	we	used	TopHat	v.	89 

2.0.12	with	ENSEMBL	GRCh37	transcriptome	and	hg19	build	to	map	reads	from	in-house	90 



	 5	

and	SRA	studies.	High-throughput	mapping	using	TopHat2	7	recovered	83.1%	of	all	reads	91 

from	three	studies	(Fig.	2.a),	with	the	smallest	fraction	of	reads	mapped	in	the	SRA	92 

study	(79%	mapped	reads).	We	have	investigated	the	effect	of	RNA-Seq	aligner	choice	93 

on	the	number	of	mapped	reads	and	performance	of	ROP	(See	main	text).		94 

.		95 

	96 
	97 
	98 
We	 mapped	 reads	 onto	 the	 human	 transcriptome	 (Ensembl	 GRCh37)	 and	 genome	99 

reference	(Ensembl	hg19)	using	tophat2	(v	2.0.13)	with	the	default	parameters.	Tophat2	100 

was	supplied	with	a	set	of	known	transcripts	(as	a	GTF	formatted	file,	Ensembl	GRCh37)	101 

using	–G	option.	The	mapped	reads	of	each	sample	are	stored	in	a	binary	format	(.bam).		102 

	103 

Categorize	mapped	reads	into	genomic	categories	104 

ROP	categorizes	 the	reads	 into	genomic	categories	based	on	the	compatibility	of	each	105 

read	 from	 the	pair	with	 the	 features	defined	by	Ensembl	 (GRCh37)	 gene	annotations.	106 

First,	we	determined	CDS,	UTR3,	UTR5	coordinates.	We	downloaded	annotations	for	CDS,	107 

UTR3,	UTR5	from	UCSC	Genome	Browser	(http://genome.ucsc.edu/cgi-bin/hgTables)	in	108 

BED	(browser	extensible	data)	format.	Next,	we	used	gene	annotations	(a	GTF	formatted	109 

file,	 Ensembl	 GRCh37)	 to	 determine	 intron	 coordinates	 and	 inter-genic	 regions.	 We	110 

defined	two	types	of	inter-genic	regions:	‘(proximate)	inter-genic’	region	(1Kb	from	the	111 

gene	 boundaries)	 and	 ‘deep	 inter-genic’	 (beyond	 a	 proximity	 of	 1Kb	 from	 the	 gene	112 

boundaries).		113 
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	114 

Next,	 we	 checked	 the	 compatibility	 of	 the	 mapped	 reads	 with	 the	 defined	 genomic	115 

features,	as	follows:		116 

	117 

a. Read	 mapped	 to	 multiple	 locations	 on	 the	 reference	 genome	 is	118 

categorized	as	a	multi-mapped	read.	119 

b. Read	fully	contained	within	the	CDS,	intron,	UTR3,	or	UTR5	boundaries	of	120 

a	 least	 one	 transcript	 is	 classified	 as	 a	 CDS,	 intronic,	 UTR3,	 or	 UTR5,	121 

respectively.	122 

c. Read	simultaneously	overlapping	UTR3	and	UTR5	regions	is	classified	as	a	123 

UTR	read.	124 

d. Read	spanning	exon-exon	boundary	is	defined	as	a	junction	read.	125 

e. Read	mapped	outside	of	gene	boundaries	and	within	a	proximity	of	1Kb	is	126 

defined	as	a	(proximal)	inter-genic	read.	127 

f. Read	mapped	outside	of	gene	boundaries	and	beyond	the	proximity	of	1Kb	128 

is	defined	as	a	deep	inter-genic	read.	129 

g. Read	mapped	 to	mitochondrial	 DNA	 (MT	 tag	 in	 hg19)	 is	 classified	 as	 a	130 

mitochondrial	read.	131 

h. 	Reads	from	a	pair	mapped	to	different	chromosomes	are	classified	as	a	132 

fusion	read.	133 

Scripts	 to	 categorize	mapped	 reads	 into	 genomic	 categories	 are	 distributed	with	 ROP	134 

protocol.		135 
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	136 

Categorize	mapped	reads	overlapping	repeat	instances		137 

Mapped	reads	were	categorized	based	on	the	overlap	with	the	repeat	instances	defined	138 

by	 RepeatMasker	 annotation	 (RepeatMasker	 v3.3,	 Repeat	 Library	 20120124).	139 

RepeatMasker	 masks	 the	 repeats	 using	 the	 RepBase	 library:	140 

(http://www.girinst.org/repbase/update/index.html),	 which	 contains	 prototypic	141 

sequences	 representing	 repetitive	DNA	 from	different	eukaryotic	 species.	We	use	GTF	142 

files	generated	from	the	RepeatMasker	annotations	by	Jin,	Ying,	et	al.	3	and	downloaded	143 

from:		144 

http://labshare.cshl.edu/shares/mhammelllab/www-145 

data/TEToolkit/TE_GTF/hg19_rmsk_TE.gtf.gz		146 

	147 

Following	Melé,	Marta,	et	al.	 4,	repeat	elements	overlapping	CDS	regions	are	excluded	148 

from	 the	 analysis.	 We	 filtered	 out	 6,873	 repeat	 elements	 overlapping	 CDS	 regions.	149 

Prepared	 repeat	 annotations	 (bed	 formatted	 file)	 are	 available	 at	150 

https://drive.google.com/file/d/0Bx1fyWeQo3cORi1UNWhxOW9kYUk/view?pref=2&pli151 

=1		152 

	153 

The	prepared	repeat	annotations	contain	8	Classes	and	43	Families.	Number	of	elements	154 

per	family	and	class	represented	below	(Supplemental	Methods	Table	SM1):		155 

	156 

classID	 N	
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DNA	 458223	

LINE	 1478382	

LTR	 707384	

RC	 2226	

SVA	 3582	

RNA	 717	

Satellite	 8950	

SINE	 1765403	

	157 

Supplemental	 Methods	 Table	 SM1.	 Number	 of	 repeat	 elements	 per	 class.	 Repeat	158 

instances	are	defined	by	RepeatMasker	(RepeatMasker	v3.3,	Repeat	Library	20120124)	159 

based	on	RepBase	 library.	RepBase	 library	contains	prototypic	sequences	 representing	160 

repetitive	DNA	from	different	eukaryotic	species.	161 

	162 

familyID	 n	

acro	 44	

Alu	 1173282	

centr	 2272	

CR1	 60577	

Deu	 1262	

DNA	 4609	
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Dong-R4	 554	

ERV	 579	

ERV1	 172612	

ERVK	 10446	

ERVL	 159606	

ERVL-MaLR	 343266	

Gypsy	 18553	

hAT	 15418	

hAT-Blackjack	 19578	

hAT-Charlie	 251618	

hAT-Tip100	 30204	

Helitron	 2226	

L1	 937636	

L2	 461296	

LTR	 2322	

Merlin	 55	

MIR	 589496	

MuDR	 1978	

Penelope	 51	

PiggyBac	 2352	

RNA	 717	

RTE	 17617	
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RTE-BovB	 651	

Satellite	 6247	

SINE	 1363	

SVA_A	 257	

SVA_B	 465	

SVA_C	 279	

SVA_D	 1358	

SVA_E	 232	

SVA_F	 991	

TcMar	 5354	

TcMar-Mariner	 16253	

TcMar-Tc2	 8098	

TcMar-Tigger	 102706	

telo	 387	

	163 

Supplemental	 Methods	 Table	 SM2.	 Number	 of	 repeat	 elements	 per	 family.	 Repeat	164 

instances	are	defined	by	RepeatMasker	(RepeatMasker	v3.3,	Repeat	Library	20120124)	165 

based	on	RepBase	library.		166 

	167 

We	determined	 the	 coordinates	 of	 repeat	 elements	 (class_id	 and	 family_id	 attributes	168 

from	the	GTF	file)	from	the	repeat	annotations.	Next,	we	checked	the	compatibility	of	the	169 

mapped	reads	with	the	repeat	instances.	We	disregarded	the	pairing	information	for	the	170 



	 11	

unmapped	reads	and	count	each	end	as	a	separate	read.	Reads	entirely	mapped	to	the	171 

corresponding	repeat	instance	are	counted.	Scripts	to	categorize	mapped	reads	based	on	172 

the	overlap	with	the	repeat	instances	are	distributed	with	ROP	protocol.		173 

	174 

Categorize	mapped	reads	overlapping	B	cell	receptor	(BCR)	and	T	cell	receptor	(TCR)	loci	175 

We	used	 the	 gene	 annotations	 (Ensembl	GRCh37)	 to	 extract	 BCR	 and	 TCR	 genes.	We	176 

extracted	gene	annotations	of	the	‘constant’	(labeled	as	IG_C_gene,	Ensembl	GRCh37),	177 

‘variable’	 (labeled	 as	 IG_V_gene,	 Ensembl	GRCh37),	 ‘diversity’	 (labeled	 as	 IG_D_gene,	178 

Ensembl	GRCh37),	and	 ‘joining’	genes	(labeled	as	 IG_J_gene,	Ensembl	GRCh37)	of	BCR	179 

and	TCR	loci.	We	excluded	the	BCR	and	TCR	pseudogenes	(labeled	as	IG_C_pseudogene,	180 

IG_V_pseudogene,	 IG_D_pseudogene,	 IG_J_pseudogene,	 TR_C_pseudogene,	181 

TR_V_pseudogene,	TR_D_pseudogene,	and	TR_J_pseudogene).	In	addition,	we	excluded	182 

the	patch	contigs	HG1592_PATCH	and	HG7_PATCH,	as	they	are	not	part	of	the	Ensembl	183 

hg19	 reference,	 and	 reads	 are	 not	mapped	 on	 the	 patch	 contigs	 by	 high	 throughput	184 

aligners.	After	following	the	filtering	steps	described	above,	we	extracted	a	total	of	386	185 

immune	genes:	207	BCR	genes	and	179	TCR	genes.	The	gene	annotations	for	antibody	186 

genes	 (GTF	 formatted	 file)	 are	 available	 at	187 

https://drive.google.com/file/d/0Bx1fyWeQo3cObFZNT3kyQlZUS1E/view?pref=2&pli=1		188 

	189 

The	number	of	VDJ	genes	per	locus	is	reported	in	the	Table	3.	190 

	191 

	 C	domain	 V	domain	 D	domain	 J	domain	
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IGH	locus	 8	 55	 38	 6	

IGK	locus	 1	 46	 -	 5	

IGL	locus	 4	 37	 -	 7	

TCRA	locus	 1	 46	 -	 57	

TCRB	locus	 1	 39	 0	 8	

TRG	locus	 2	 9	 -	 5	

TRD	locus	 1	 3	 11	 4	

	192 

Supplemental	Methods	Table	SM3.	The	number	of	VDJ	genes	for	each	antibody	chains.	193 

Antibody	genes	were	extracted	from	the	gene	annotations	(Ensembl	GRCh37).		194 

	195 

The	 list	of	 the	genes	encoding	the	C	region	of	 the	BCR	and	TCR	chains	 is	presented	 in	196 

Supplemental	Methods	Table	SM4.		197 

	198 

Name	of	the	chain		 Genes	encoding	for	the	C	region	of	the	chain	

IG@	locus	

α	heavy	IG	chain	 IGHA1,	IGHA2	

δ	heavy	IG	chain		 IGHD	

γ	heavy	IG	chain	 IGHG1,	IGHG2,	IGHG3,	IGHG4	

ε	heavy	IG	chain	 IGHE	

μ	heavy	IG	chain	 IGHM	
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κ	light	IG	chain	 IGKC	

λ	light	IG	chain	 IGLC1,	IGLC2,	IGLC3,	IGLC7	

TCR@	locus	

α	TCR	chain	 TRAC	

Β	TCR	chain	 TRBC2	

γ	TCR	chain	 TRGC1,	TRGC2	

	δ	TCR	chain	 TRDC	

	199 

Supplemental	Methods	Table	SM4.	List	of	the	genes	encoding	the	C	region	of	the	BCR	200 

and	TCR	chains.	Genes	were	extracted	from	the	gene	annotations	(Ensembl	GRCh37).	201 

	202 

The	 number	 of	 reads	 mapping	 to	 each	 C-V-D-J	 genes	 was	 obtained	 by	 counting	 the	203 

number	of	sequencing	reads	that	align,	with	high	confidence,	to	each	of	the	genes	(HTSeq	204 

v0.6.1)	 5.	 Script	 “htseq-count”	 is	 supplied	with	 the	 gene	annotations	 for	BCR	and	TCR	205 

genes	(genes_Ensembl_GRCh37_BCR_TCR.gtf)	and	a	bam	file.	The	bam	file	contains	reads	206 

mapped	to	the	human	genome	and	transcriptome	using	tophat2	(See	Section	“Map	reads	207 

onto	 human	 genome	 and	 transcriptome”	 for	 details).	 The	 script	 generates	 individual	208 

gene	counts	by	examining	the	read	compatibility	with	BCR	and	TCR	genes.	We	chose	a	209 

conservative	setting	(--mode=intersection-strict)	to	handle	reads	overlapping	more	than	210 

one	feature.	Thus,	a	read	overlapping	several	genes	simultaneously	is	marked	as	a	read	211 

with	no	feature	and	is	excluded	from	the	consideration.		212 

	213 
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Workflow	for	categorizing	the	unmapped	reads	214 

We	first	converted	the	unmapped	reads	saved	by	tophat2	from	a	BAM	file	into	a	FASTQ	215 

file	(using	bamtools).	The	FASTQ	file	of	unmapped	contain	full	read	pairs	(both	ends	of	a	216 

read	pair	were	unmapped)	and	discordant	read	pairs	(one	read	end	was	mapped	while	217 

the	other	end	was	unmapped).	We	disregarded	the	pairing	information	of	the	unmapped	218 

reads	and	categorize	unmapped	reads	using	the	following	steps:	219 

	220 

A.	Quality	Control	221 

Low	quality	reads,	defined	as	reads	that	have	quality	lower	than	30	in	at	least	75%	of	their	222 

base	pairs,	were	 identified	by	 in	house	script	 .	Low	complexity	reads,	defined	as	reads	223 

with	sequences	of	consecutive	repetitive	nucleotides,	are	identified	by	SEQCLEAN.	As	a	224 

part	of	 the	quality	control,	we	also	excluded	unmapped	reads	mapped	onto	 the	 rRNA	225 

repeat	 sequence	 (HSU13369	Human	 ribosomal	DNA	complete	 repeating	unit)	 (BLAST+	226 

2.2.30).	We	have	masked	the	HSU13369	rRNA	sequence	using	Repeat	Masker	via	online	227 

interface	at	http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker.		228 

	229 

The	report	from	Repeat	Masker	is	provided	below:	230 

==================================================	231 

file	name:	RM2_rRNA.fa_1508888790		232 

sequences:						1	233 

total	length:			42999	bp	(42999	bp	excl	N/X-runs)		234 

GC	level:				58.38	%	235 
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bases	masked:			23004	bp	(	53.50	%)	236 

==================================================	237 

							number	of			length	percentage	238 

							elements*		occupied	of	sequence	239 

--------------------------------------------------	240 

SINEs:							25				5881	bp	13.68	%	241 

			ALUs					25				5881	bp	13.68	%	242 

			MIRs						0						0	bp		0.00	%	243 

	244 

LINEs:								2					541	bp		1.26	%	245 

			LINE1					2					541	bp		1.26	%	246 

			LINE2					0						0	bp		0.00	%	247 

			L3/CR1					0						0	bp		0.00	%	248 

	249 

LTR	elements:				2					250	bp		0.58	%	250 

			ERVL						0						0	bp		0.00	%	251 

			ERVL-MaLRs			0						0	bp		0.00	%	252 

			ERV_classI			2					250	bp		0.58	%	253 

			ERV_classII		0						0	bp		0.00	%	254 

	255 

DNA	elements:				1					388	bp		0.90	%	256 

		hAT-Charlie			0						0	bp		0.00	%	257 
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		TcMar-Tigger		0						0	bp		0.00	%	258 

	259 

Unclassified:				0						0	bp		0.00	%	260 

	261 

Total	interspersed	repeats:		7060	bp	16.42	%	262 

	263 

	264 

Small	RNA:						2				6862	bp	15.96	%	265 

	266 

Satellites:					0						0	bp		0.00	%	267 

Simple	repeats:			66				8941	bp	20.79	%	268 

Low	complexity:			3					141	bp		0.33	%	269 

==================================================	270 

	271 

We	 prepared	 the	 index	 from	 masked	 rRNA	 repeat	 sequence	 using	 makeblastdb	 and	272 

makembindex	from	BLAST+.	We	used	the	following	command	for	makeblastdb:		273 

Ø makeblastdb	-parse_seqids	-dbtype	nucl	-in	<fasta	file>.		274 

We	used	the	following	command	for	makembindex:		275 

Ø makembindex	-input	<fasta	file>	-output	<index>	-iformat	blastdb	276 

	277 
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B.	Mapping	unmapped	reads	onto	the	human	references.		278 

We	remapped	the	unmapped	reads	to	the	human	reference	sequences	using	Megablast	279 

(BLAST+	2.2.30).	We	mapped	reads	onto	the	following	references:	280 

• Reference	transcriptome	(known	transcripts),	Ensembl	GRCh37	281 

• Reference	genome,	hg19	Ensembl	282 

We	 prepared	 the	 index	 from	 each	 reference	 sequence	 using	 makeblastdb	 and	283 

makembindex.	We	mapped	the	reads	separately	onto	each	reference	in	the	order	listed	284 

above.	Reads	mapped	to	the	reference	genome	and	transcriptome	were	merged	into	a	285 

‘lost	human	 reads’	 category.	The	 following	options	were	used	 to	map	 the	 reads	using	286 

Megablast:	 for	each	reference:	task	=	megablast,	use_index	=	true,	perc_identity	=	90,	287 

outfmt	=	6,	max_target_seqs	=1,	e-value	=	1e-05.		288 

	289 

C.	Identification	of	hyper-edited	reads		290 

We	 have	 used	 hyper-editing	 pipeline	 (HE-pipeline	291 

http://levanonlab.ls.biu.ac.il/resources/zip),	 which	 is	 capable	 of	 identifying	 hyper-292 

edited	reads.	When	running	HE-pipeline,	additional	changes	can	be	made	to	parallelize	293 

the	 scripts	 for	 use	 with	 UCLA's	 Hoffman2	 cluster.	 Before	 proceeding,	 follow	 the	294 

instructions	in	the	README	that	is	included	with	the	scripts	to	prepare	the	reference	and	295 

provide	the	necessary	third-party	tools.	Ensure	that	the	output	directory	is	set	correctly	296 

in	config_file.sh	(it	is	acceptable	to	use	a	single	output	directory),	and	check	that	the	list	297 

of	input	files	has	been	prepared	correctly.	298 

	299 
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Details	on	how	to	run	HE-pipeline	are	available	here:		300 

https://github.com/smangul1/rop/wiki/How-to-run-hyper-editing-pipeline		301 

	302 

D.	Mapping	unmapped	reads	onto	the	repeat	sequences	303 

We	filtered	out	the	reads	that	failed	QC	and	lost	human	reads.	The	remaining	reads	were	304 

mapped	 to	 the	 reference	 repeat	 sequences.	 The	 reference	 repeat	 sequences	 were	305 

downloaded	 from	 Repbase	 v20.07	 (http://www.girinst.org/repbase/).	 Human	 repeat	306 

elements	 (humrep.ref	 and	 humsub.ref)	 were	 merged	 into	 a	 single	 reference.	 We	307 

prepared	 the	 index	 from	 the	 merged	 repeat	 reference	 using	 makeblastdb	 and	308 

makembindex	from	BLAST+.	In	total,	we	obtained	sequences	for	1,117	repeat	elements.	309 

The	following	options	were	used	to	map	the	reads	using	the	Megablast:	task	=	megablast,	310 

use_index	=	true,	perc_identity	=	90,	outfmt	=	6,	max_target_seqs	=	1,	e-value	=	1e-05.	311 

Blast	 hits	with	 alignment	 length	 shorter	 than	 80%	 of	 the	 read	 length	were	 discarded	312 

(corresponding	to	80bp	of	the	100bp	read).		313 

	314 

The	repeat	elements	from	humrep.ref	and	humsub.ref	were	classified	into	families	and	315 

classes	 using	 RepeatMasker	 annotations	 (hg19_rmsk_TE_prepared_noCDS.bed).	316 

Repetitive	reads	identified	from	the	unmapped	reads	were	confirmed	by	directly	applying	317 

RepeatMasker	6.	318 

	319 
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E.	Workflow	to	detect	‘non-co-linear’	reads	(trans-splicing,	gene	fusions,	and	circRNAs)	320 

	321 

We	divide	non-co-linear	reads	into	three	categories:		322 

	323 

1) gene	fusion	characterized	by	reads	that	map	on	different	chromosomes	324 

2) trans-splicing	events	characterized	by	reads	that	map	on	the	same	chromosome,	325 

but	are	at	least	1	Mb	apart	from	each	other		326 

3) circRNAs	characterized	by	reads	that	map	in	a	head-to-tail	configuration	on	the	327 

same	chromosome	328 

	329 

To	distinguish	between	these	three	categories,	we	make	use	of	circExplorer2	(Zhang	et	330 

al.,	 2016),	 which	 was	 recently	 identified	 as	 one	 of	 the	 best	 tools	 to	 detect	 circRNAs	331 

(Hansen	 et	 al.,	 2015).	 CircExplorer2	 relies	 on	 TopHat-Fusion	 and	 thus	 allows	 also	 the	332 

monitoring	NCL	events	 in	 the	same	run.	TopHat-Fusion	 (v2.0.13,	bowtie1	v0.12.9)	and	333 

circExplorer2	(v2.2.4)	were	invoked	with	the	following	commands:	334 

	335 

$	tophat2	-o	tophat-output-directory	-p	4	--fusion-search	--keep-fasta-order	--bowtie1	--336 

no-coverage-search	bowtie1-index	fastq-file	337 

	338 

$	python	CIRCexplorer2	parse	-t	TopHat-Fusion	-o	circrna-output-folder	tophat-output-339 

directory/accepted_hits.bam		 	340 

	341 
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$	python	CIRCexplorer2	annotate	-r	ensemble-reference.txt	-g	genome.fa	circrna-output-342 

folder		343 

	344 

To	separate	potential	gene	and	trans-fusions	from	the	TopHat-Fusion	output,	we	ran	a	345 

ruby	custom	script,	which	is	part	of	the	ROP	pipeline.	346 

F.	Mapping	unmapped	reads	onto	the	V(D)J	recombinations	of	B	and	T	cell	receptors	347 

Gene	segments	of	B	cell	receptors	(BCR)	and	T	cell	receptors	(TCR)	were	imported	from	348 

IMGT	 (International	 ImMunoGeneTics	 information	 system):	349 

(http://www.imgt.org/vquest/refseqh.html#V-D-J-C-sets).		350 

IMGT	database	contains:	351 

• Variable	(V)	gene	segments	352 

• Diversity	(D)	gene	segments	353 

• Joining	(J)	gene	segments		354 

Unmapped	reads	categorized	by	step	(A)-(D)	were	filtered	out.	We	used	IgBLAST	(v.	1.4.0)	355 

with	 stringent	 e-value	 threshold	 (e-value	 <	 10-20)	 to	 map	 the	 remaining	 high-quality	356 

unmapped	reads	onto	the	V(D)J	regions	of	the	of	the	BCR	and	TCR	loci.	Reference	files	357 

with	BCR	and	TCR	VDJ	gene	segments	are	distributed	with	ROP	protocol	and	available	at	358 

https://drive.google.com/folderview?id=0Bx1fyWeQo3cOTkhKdHFDb3c5MjA&usp=shari359 
ng	360 
		361 

The	complete	list	of	the	references	is	presented	in	Supplemental	Methods	Table	SM5.		362 

Name	of	the	reference	file	 Description	of	the	gene	
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BCR	heavy	chain	

IGHV.fa	 V	genes	of	BCR	heavy	chain	

IGHD.fa	 D	genes	of	BCR	heavy	chain	

IGHJ.fa		 J	genes	of	BCR	heavy	chain	

BCR	light	chains	

IGLV.fa	 V	genes	of	BCR	lambda	chain	

IGLJ.fa	 J	genes	of	BCR	lambda	chain	

IGKV.fa	 V	genes	of	BCR	kappa	chain	

IGKJ.fa	 J	genes	of	BCR	kappa	chain	

TCR	chains	

TCRAV.fa	 V	genes	of	TCR	alpha	chain	

TCRAJ.fa	 J	genes	of	TCR	alpha	chain	

TCRBV.fa	 V	genes	of	TCR	beta	chain	

TCRBD.fa	 D	genes	of	TCR	beta	chain	

TCRBJ.fa	 J	genes	of	TCR	beta	chain	

TCRGV.fa	 V	genes	of	TCR	gamma	chain	

TCRGJ.fa	 J	genes	of	TCR	gamma	chain	

TCRDV.fa	 V	genes	of	TCR	delta	chain	

TCRDD.fa	 D	genes	of	TCR	delta	chain	

TCRDJ.fa	 J	genes	of	TCR	delta	chain	

	363 
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Supplemental	Methods	Table	SM5.	List	of	the	references	files	prepare	for	V-D-J	from	364 

BCR	and	TCR	loci.	365 

	366 

We	 prepared	 the	 index	 from	 each	 reference	 sequence	 using	 makeblastdb	 and	367 

makembindex	 from	BLAST+.	 The	 following	options	were	 used	 to	map	 the	 reads	 using	368 

IgBLAST:	-germline_db_V;	germline_db_D;	-germline_db_J;	-organism=human;	-outfmt	=	369 

7;	–evalue	=	1e-20.		370 

	371 

The	number	of	genes	and	gene	alleles	per	antibody	locus	is	presented	in	Supplemental	372 

Methods	Table	SM6.		373 

	374 

	 V	domain	 D	domain	 J	domain	

IGH	locus	 136(370)	 27(34)	 9(16)	

IGK	locus	 100(124)	 -	 5(9)	

IGL	locus	 70(111)	 -	 7(10)	

TCRA	locus	 54(112)	 -	 61(68)	

TCRB	locus	 77(160)	 2(3)	 14(16)	

TRG	locus	 14(26)	 -	 5(6)	

TRD	locus	 8(22)	 0(0)	 1(4)	

	375 

Supplemental	Methods	 Table	 SM6.	 The	number	of	V-D-J	 genes	 and	 gene	alleles	per	376 

antibody	 locus.	 Number	 of	 genes	 is	 presented	 in	 bold	 and	 number	 of	 gene	 alleles	 is	377 
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presented	in	parenthesis.	Gene	and	gene	alleles	of	B	cell	receptors	(BCR/IG)	and	T	cell	378 

receptors	(TCR)	were	imported	from	IMGT.		379 

	380 

We	 assessed	 combinatorial	 diversity	 of	 the	 antibody	 repertoire	 by	 looking	 at	 the	381 

recombinations	of	 the	VJ	gene	segments	of	BCR	and	TCR	 loci.	We	extracted	the	reads	382 

spanning	the	V-J	gene	boundaries.		383 

	384 

G.	Identification	of	microbial	reads	385 

Unmapped	reads	mapping	in	step	(A	-E)	were	filtered	out.	The	remaining	reads	were	high-386 

quality	 non-human	 reads	 used	 to	 profile	 the	 taxonomic	 composition	 of	 the	microbial	387 

communities.	We	used	MetaPhlAn2	(Metagenomic	Phylogenetic	Analysis,	v	2.0)	to	assign	388 

reads	on	microbial	genes	and	to	obtain	a	taxonomic	profile.	The	database	of	the	microbial	389 

marker	genes	is	provided	by	MetaPhlAn.	We	run	MetaPhlAn	in	two	stages	as	follow:	the	390 

first	stage	identifies	the	candidate	microbial	reads	(i.e.,	reads	hitting	a	marker),	while	the	391 

second	 stage	profiles	metagenomes	 in	 terms	of	 relative	abundances	–	 the	 commands	392 

used	are	as	follow:	393 

Ø metaphlan.py	 <fastq>	 <map>	 --input_type	 multifastq	 --bowtie2db	394 

bowtie2db/mpa	-t	reads_map	--nproc	8	--bowtie2out		395 

Ø metaphlan.py	--input_type	blastout	<bowtie2out.txt>	-t	rel_ab	<tsv>	396 

	397 

The	output	of	the	first	stage	is	a	file	containing	a	list	of	candidate	microbial	reads	with	the	398 

microbial	taxa	assigned	(.map	file).	The	second	stage	outputs	the	taxonomic	profile	(taxa	399 
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detected	and	 its	 relative	abundance,	 in	 tab	 separated	 format	 (.tsv	 file).	We	used	 taxa	400 

detected	from	stage	2	to	extract	the	reads	associated	with	it	in	stage	1.		401 

In	addition	to	MetaPhlAn2	we	used	to	create	the	curated	database	of	taxa-specific	genes,	402 

we	mapped	 the	 reads	onto	 the	entire	 reference	genomes	of	microbial	organisms.	We	403 

used	Megablast	(BLAST+	2.2.30)	to	align	reads	onto	the	collection	of	bacterial,	viral,	and	404 

eukaryotic	pathogens	reference	genomes.	Bacterial	and	viral	genomes	were	downloaded	405 

from	NCBI	ftp://ftp.ncbi.nih.gov/	on	February	1,	2015.	Genomes	of	eukaryotic	pathogens	406 

were	 downloaded	 from	 EuPathDB	 database,	 which	 is	 available	 at:	407 

http://eupathdb.org/eupathdb/.		408 

The	 following	 parameters	 were	 used	 for	 the	 megablast	 alignment:	 e-value	 =	 10-5,	409 

perc_identity	=	90.	The	Megablast	hits	shorter	than	80%	of	the	input	read	sequence	were	410 

removed	(corresponding	to	80bp	of	the	100bp	read).		411 

	412 

Comparing	diversity	across	groups	413 

First,	we	sub-sampled	unmapped	reads	to	the	number	of	reads	corresponding	to	a	sample	414 

with	the	smallest	number	of	unmapped	reads.	Diversity	within	a	sample	was	assessed	415 

using	the	richness	and	alpha	diversity	indices.	Richness	was	defined	as	a	total	number	of	416 

distinct	 events	 in	 a	 sample.	We	 used	 Shannon	 Index	 (SI),	 incorporating	 richness	 and	417 

evenness	components,	to	compute	alpha	diversity,	which	is	calculated	as	follows:	418 

SI = 	− 𝑝× log+ 𝑝 	419 
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We	 used	 beta	 diversity	 (Sørensen–Dice	 index)	 to	 measure	 compositional	 similarities	420 

between	 the	 samples	 in	 terms	 of	 gain	 or	 loss	 in	 the	 events.	We	 calculated	 the	 beta	421 

diversity	for	each	combination	of	the	samples,	and	we	produced	a	matrix	of	all	pairwise	422 

sample	dissimilarities.	The	Sørensen–Dice	beta	diversity	 index	 is	measured	as	1 − +-
./0

,	423 

where	J	is	the	number	of	shared	events,	while	A	and	B	are	the	total	number	of	events	for	424 

each	sample,	respectively.		425 

	426 

Percentage	of	unmapped	reads	calculation	427 

We	calculated	the	percentage	of	unmapped	reads	using	the	following	formula:	428 

P23456678 =
N28 + (N2<×2 )
(N?@?5A×2	)

	429 

where,		430 

Nud	–	number	of	discordant	unmapped	reads	(one	end	is	mapped,	while	the	other	end	is	431 

unmapped);		432 

Nuc	–	number	of	unmapped	read	pairs	(both	ends	are	unmapped);	433 

Ntotal	–	total	number	of	read	pairs	(fragments).	434 

	435 

Identification	of	reads	originated	during	the	library	construction		436 

	437 

We	 have	 investigated	 the	 number	 of	 reads	 that	 could	 have	 originated	 during	 library	438 

construction.	We	have	used	the	database	of	primer	and	adapter	sequences	prepared	by	439 
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FASTQC,	 a	 quality	 control	 tool	 for	 high	 throughput	 sequence	 data.	 The	 database	was	440 

downloaded		from:	http://www.bioinformatics.babraham.ac.uk/projects/fastqc/			441 

	442 

BWA	index	was	prepared	with	the	following	command:	443 

	444 

• bwa	index	contaminant_list.custom.fa	445 

Reads	containing	the	adapter	or	primer	sequencing	with	the	read	are	identified	using	the	446 

following	command:	447 

	448 

• bwa	mem	/rop/data/contaminant_list.custom.fa	<unmapped.fasta>	|	samtools	449 
view	-F	4	|	grep	"NM:i:0"		450 

	451 

We	have	investigated	the	number	of	the	reads	containing	adapter	or	primer	sequence	452 

across	2000	SRA	samples.	On	average	we	observe	0.01%	of	the	reads	containing	adapter	453 

or	primer	sequence.	Above	90%	of	the	samples	have	less	than	0.01%	of	adapter	or	primer	454 

sequences.		455 

	456 

Prepared	database	of	of	primer	and	adapter	sequences		and	corresponding	bowtie2	index		457 

are	distributed	with	ROP	software	package.	458 

	459 

Simulated	RNA-Seq	data	as	a	mixture	of	transcriptomic,	repeat,	immune,	and	microbial	460 

reads		461 
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We	 simulated	 RNA-Seq	 data	 as	 a	 mixture	 of	 transcriptomic,	 repeat,	 immune,	 and	462 

microbial	 reads	 using	wgsim	 read	 simulator	 (https://github.com/lh3/wgsim	 ).	We	 use	463 

referenced	 human	 transcript	 sequences	 (Homo_sapiens.GRCh38.79.gtf)	 to	 simulate	464 

transcriptomics	reads.	We	used	referenced	repeat	sequences	to	simulate	repeat	reads.	465 

Immune	 transcripts	 were	 simulated	 using	 ImRep-simulation	 tool8.	 We	 have	 use	466 

microbiome	sequences	downloaded	from	NCBI	to	simulate	the	microbial	reads.		467 

	468 

To	simulate	human	transcriptomics	reads	we	first	obtain	the	sequences	of	the	469 

transcripts	using	the	following	command:	470 

$gffread	genes.gtf	-g	genome.fa	-w	isoforms_GRCh37_Ensembl.fasta	471 

	472 

We	simulate	618	human	transcriptomics	reads	from		known	isoforms	using	the	473 

following	command:	474 
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$wgsim	-r	0.01	-e	0.01	-1	100	-2	100	-A	0	-N	618	isoforms_GRCh37_Ensembl.fasta	475 

reads_TR_1.fastq	reads_TR_2.fastq	>log	2>log2	476 

To	simulate	repeat	reads	we	used	the	repbase	database	of	repeat	elements	477 

(distribuuted	with	ROP)	478 

$	wgsim	-r	0.01	-e	0.01	-1	100	-2	100	-A	0	-N	250	repbase.fa	repeats_1.fastq	479 

repeats_2.fastq	480 

We	simulated	250	immune	reads	from	recombined	B	and	T	cell	receptor	transcripts,	as	481 

described	in	Mangul		et	al.	(2017).		482 

We	simulated	microbial	reads	from	viral	and	bacterial	reference	genomes.		483 

wgsim	-r	0.01	-e	0.01	-1	100	-2	100	-A	0	-N	250	~/project/Viruses/viruses.fa	virus_1.fastq	484 

virus_2.fastq	>log	485 

wgsim	-r	0.01	-e	0.01	-1	100	-2	100	-A	0	-N	250	~/project/Bacteria/bacteria.fa	486 

bacteria_1.fastq	bacteria_2.fastq	>log_bacteria.txt	487 

	488 

TCRB-Seq	489 

We	have	downloaded	TCRB-Seq	data	from	https://clients.adaptivebiotech.com/pub/Liu-490 

2016-NatGenetics.	Data	was	prepared	by	Li,	Bo,	et	al.	(2017).	It	contains	3	TCRB-Seq	491 
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samples	from	3	individuals	from	TCGA	study.	From	TCRB-Seq	data	we	have	extracted	VJ	492 

recombinations	using	the	following	script:	493 

https://github.com/smangul1/rop-494 

project/blob/master/validation/experimental_data/TCRB-SEQ/extract_VJ.sh		495 

	496 

	For	sample	TCGA-CZ-4862	we	have	extracted	54	recombinations	of	V	and	J	gene	497 

segments	.	For	sample	TCGA-CZ-5463	we	have	extracted	53	recombinations	of	V	and	J	498 

gene	segments.	For	sample	TCGA-CZ-5985	we	have	extracted	53	recombinations	of	V	499 

and	J	gene	segments	500 

ROP	was	able	to	identify	between	1	and	4	VJ	recombinations.	All	recombinations	inferred	501 

by	ROP	were	confirmed	by	TCRB-Seq.	Per	sample	recombinations	are	available	here	502 

https://github.com/smangul1/rop-project/tree/master/validation/experimental_data		503 

	504 

The	robustness	of	the	ROP	results	against	changing	the	thresholds	for	each	of	the	ROP	505 

steps		506 

	507 

We	have	performed	the	robustness	analysis	to	investigate	the	impact	of	the	thresholds	508 

used	in	each	step	of	the	ROP	approach.	For	each	ROP	step,	we	have	reported	number	of	509 

reads	 identified	 under	 different	 thresholds.	 The	 results	 are	 presented	 as	 cumulative	510 

frequency	plots.		511 

	512 
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	518 

	519 

Supplemental	 Methods	 Figure	 SM1.	 Percentage	 of	 reads	 identified	 under	 different	520 

threshold	values.	Results	are	presented	as	cumulative	frequency	plots	for	each	step	of	521 

ROP.	ROP	threshold	is	highlighted	with	red	line.		522 

The	 percentages	 are	 the	 averages	 across	 87	 samples.	 (a)	 Step	 2	 (Remap	 to	 human	523 

references).	 Cumulative	 frequency	 plot	 reporting	 the	 percentage	 of	 lost	 human	 reads	524 

averaged	across	all	samples	(y-axis)	identified	under	different	threshold	(edit	distance)	(x-525 

axis).	 Edit	 distance	was	 calculated	 as	 the	minimum	number	of	 operations	 required	 to	526 

transform	 a	 read	 sequence	 into	 the	 corresponding	 reference	 subsequence.	 Reads	 are	527 

grouped	by	edit	distance	with	 the	 transcriptome	or	 the	genome	 reference.	 (b)	 Step	3	528 

(Map	to	repeat	sequences).	Cumulative	frequency	plot	reporting	the	percentage	of	lost	529 

repeat	 reads	 (y-axis)	 identified	under	different	 threshold	 averaged	across	 (percentage	530 

identity)	 (x-axis).	 (c)	 Step	 4	 (NCl	 RNA	 profiling).	 Cumulative	 frequency	 plot	 of	 the	531 

percentage	of	NCL	reads	averaged	across	all	samples	(y-axis)	 identified	under	different	532 
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thresholds	 (number	 of	 reads	 supporting	 NCL	 event)	 (x-axis).	 Results	 are	 reported	533 

separately	for	circRNAs,	gene	fusions	and	trans-splicing	events.	(d)		Step	5	(B	and	T	cell	534 

receptors	 profiling).	 Cumulative	 frequency	 plot	 reporting	 the	 percentage	 of	 immune	535 

reads	averaged	across	all	samples	(y-axis)	identified	under	different	threshold	(e-value)	536 

(x-axis).	 (e)	 Step	 6	 (Microbiome	 profiling).	 Cumulative	 frequency	 plot	 reporting	 the	537 

percentage	 of	 microbial	 reads	 averaged	 across	 all	 samples	 (y-axis)	 identified	 under	538 

different	threshold	(percentage	identity)	(x-axis).	Results	are	reported	separately	for	viral,	539 

bacterial	and	eukaryotic	reads.		540 

	541 

	542 

The	impact	of	ROP	step	ordering	on	the	read	classification	543 

We	have	investigated	the	effect	of	the	ordering	on	read	classification.	Ordering	of	ROP	544 

steps	will	have	an	effect	only	when	references	of	each	step	share	homologous	sequences.	545 

For	each	ROP	step,	we	have	swapped	its	order	with	another	ROP	step.	For	example,	we	546 

considered	 swapping	 ‘Remapping	 to	 human	 references’	 reads	 and	 ‘QC’	 steps.	 Before	547 

swapping,	‘Remapping	to	human	references’	was	number	2	in	the	queue.	After	swapping,	548 

it	became	number	1.		549 

	550 

We	observed	a	major	effect	of	swapping	‘Remapping	to	human	references’	with	all	other	551 

steps.	For	example,	swapping	‘Remapping	to	human	references’	and	‘QC’	steps	results	in	552 

classifying	79.6%	of	rRNA	reads	as	lost	human	reads.	Similarly,	swapping	‘Remapping	to	553 

human	references’	and	‘Microbiome	profiling’	steps	results	in	classifying	0.2%	of	the	lost	554 
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human	reads	as	microbiome	reads.	In	other	words,	this	swap	produces	a	27.8%	increase	555 

of	 microbiome	 reads.	 Similarly,	 considering	 ‘B	 and	 T	 lymphocytes	 profiling’	 prior	 to	556 

‘Remapping	to	human	references’	produces	a	50.8%	increase	of	identified	immune	reads.	557 

Considering	partial	mapping	of	BCR	and	TCR	 reads	prior	 to	 the	 ‘Remapping	 to	human	558 

references’	step	may	produce	many	false	positives.	Swapping	other	steps	of	ROP	resulted	559 

in	minor	effects	(i.e.,	<1%	of	reads	from	each	category	were	effected).		560 

	561 

The	effect	of	different	library	preparation	techniques	over	the	ability	to	detect	B	and	T	562 

cell	receptor	transcripts.		563 

	564 

Using	 in-house	data,	we	 investigated	 the	effect	of	different	 library	preparation	565 

techniques	over	the	ability	to	detect	B	and	T	cell	receptor	transcripts.	We	compared	the	566 

alpha	 diversity	 in	 large	 airway	 samples	 to	 nasal	 samples	 (Supplemental	 Fig.	 S16).	567 

Decreased	alpha	diversity	in	large	airway	samples	compared	to	nasal	(2.5	for	nasal	versus	568 

1.0	for	large	airway)	could	correspond	to	an	overall	decrease	in	percentage	of	immune	569 

reads.	 This	 effect	 can	 be	 attributed	 to	 the	 ribo-depletion	 protocol	 not	 enriching	 for	570 

polyadenylated	antibody	transcripts.	Alternatively,	it	may	result	from	clonal	expansion	of	571 

certain	clonotypes	responding	to	the	cognate	antigen.		572 

	573 

Distribution	of	low	quality	reads	across	categories	of	ROP	574 

	575 

	576 
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We	investigated	the	distribution	of	low	quality	reads	across	categories	of	ROP.	On	577 

average,	40.3%	of	low	quality	reads	were	assigned	to	ROP	categories.	Majority	of	low	578 

quality	reads	are	classified	as	microbial	and	lost	human	reads,	corresponding	to	21.4%	579 

and	18.7%,	respectively,	of	all	low	quality	reads	(Supplemental	Methods	Table	SM7).	580 

The	fraction	of	low	quality	reads	among	all	the	reads	across	ROP	categories	was	21.6%	581 

on	average.	The	largest	contribution	of	low	quality	reads	was	detected	in	lost	human	582 

reads	and	microbial	reads,	which	represented	44.0%	and	43.6%,	of	all	low	quality	reads	583 

respectively	(Supplemental	Methods	Table	SM8).	584 

	585 

	586 

	587 

sample	

rRNA	

repeat	

lost	

human	

reads	

lost	repeat	

elements	 NCL	RNAs	

recombined	

BCR/TCRs	

microbial	

reads	

SRR3703207	 0.00%	 20.15%	 0.03%	 0.05%	 0.00%	 8.30%	

SRR5831944	 0.00%	 17.21%	 0.08%	 0.12%	 0.02%	 34.59%	

	588 

	589 

Supplemental	Methods	Table	SM7.	Distribution	of	low	quality	reads	across	categories	590 

of	ROP.	Low	quality	reads	are	defined	as	reads	that	have	quality	lower	than	30	in	at	least	591 

75%	of	their	base	pairs.	The	percentage	for	each	category	is	calculated	as	a	fraction	592 
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from	the	total	number	of	low	quality	reads.	Results	are	presented	for	SRR3703207	and	593 

SRR5831944	SRA	RNA-Seq	samples.		594 

	595 

sample	

rRNA	

repeat	

lost	

human	

reads	

lost	repeat	

elements	 	NCL	RNAs	

	

recombined	

BCR/TCRs	 	microbial	reads	

SRR3703207	 0.0%	 63.7%	 39.1%	 4.5%	 0.0%	 45.1%	

SRR5831944	 0.0%	 24.3%	 8.3%	 1.2%	 30.8%	 42.0%	

	596 

Supplemental	Methods	Table	SM8.	Contribution	of	low	quality	reads	across	categories	597 

of	ROP.	Low	quality	reads	are	defined	as	reads	that	have	quality	lower	than	30	in	at	least	598 

75%	of	their	base	pairs.	The	percentage	for	each	category	is	calculated	as	a	fraction	599 

from	the	total	number	of	reads	in	each	ROP	category.	Results	are	presented	for	600 

SRR3703207	and	SRR5831944	SRA	RNA-Seq	samples.		601 

	602 

	603 

Analysis	of	read	pairs	discordant	across	ROP	classes	604 

	605 

Using	 both	 simulated	 and	 real	 data	 we	 have	 investigated	 the	 number	 of	 read	 pairs	606 

discordant	across	ROP	classes,	where	 the	 reads	 from	 the	 same	pair	 are	 classified	 into	607 

different	 classes.	 In	 the	 simulated	 data,	 no	 discordant	 read	 pairs	 across	 classes	were	608 

detected,	 except	 0.18%	 of	 discordant	 reads	 pairs	 across	 transcriptomic	 and	 repeat	609 
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categories.	We	detected	an	average	of	0.47%	discordant	read	pairs	across	transcriptomic	610 

and	repeat	categories	across	SRA	RNA-seq	samples.	The	number	of	discordant	read	pairs	611 

across	 microbiome	 and	 human	 sequences	 was	 0.001%	 in	 SRA	 RNA-Seq	 samples.	612 

Discordant	read	pairs	across	microbiome	and	human	sequences	can	be	due	to	spurious	613 

mapping	or	due	to	viral	integration	sites9.	614 

	615 

Complexity	analysis	using	Capture	Recapture	Model	616 

Given	a	sequencing	experiment,	the	Read	Origin	Protocol	(ROP)	attempts	to	classify	every	617 

sequenced	read	in	the	experiment	to	an	“origin”	class.	These	origins	can	be	considered	to	618 

be	features	of	interest	(e.g.,	exons,	retroviral,	immune,	or	bacterial).	Since	every	read	is	619 

assigned	to	only	one	class,	we	can	consider	the	reads	assigned	to	a	specific	class	to	be	a	620 

random	 sample	 from	 the	population	of	 possibilities	within	 that	 class.	 This	 leads	 us	 to	621 

consider	 statistical	 models	 for	 population	 sampling,	 which	 are	 known	 as	 “capture-622 

recapture”	models	10.	623 

Using	 capture-recapture	 models	 allows	 us	 to	 make	 statistical	 inferences	 on	 several	624 

quantities	 of	 interest.	 Of	 primary	 interest	 is	 the	 total	 number	 of	 possibilities	 in	 the	625 

feature.	We	shall	refer	to	this	as	the	feature	size	but	is	commonly	known	in	the	statistics	626 

literature	as	species	richness	10,11.	We	also	consider	the	number	of	identified	possibilities	627 

within	a	feature	as	a	function	of	the	number	of	reads.	We	call	this	the	complexity	of	the	628 

feature,	 in	 line	 with	 the	 notation	 of	 Daley	 and	 Smith	 12.	 The	 rate	 of	 change	 in	 the	629 

complexity	 curve	 is	 proportional	 to	 the	 probability	 the	 next	 read	 in	 a	 previously	630 

unobserved	 class	 13.	 This	 quantity	 is	 commonly	 known	 in	 statistics	 literature	 as	 the	631 
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mathematical	coverage	14,	but	to	avoid	confusion	with	sequencing	coverage,	we	call	this	632 

the	 discovery	 probability	 15.	 One	 minus	 the	 discovery	 probability	 will	 be	 called	 the	633 

saturation	of	the	feature.	634 

Statistical	Model	635 

Suppose	 we	 sequence	 N	 reads	 from	 an	 experiment.	 There	 are	 C	 feature	 classes,	636 

represented	in	the	sequencing	library	with	proportions	πC, … , 𝜋G .	Features	may	overlap,	637 

so	it	 is	not	necessary	that	the	proportions	sum	to	one.	The	features	are	all	known	and	638 

defined	beforehand.	This	trait	is	in	contrast	to	the	number	of	classes	within	each	feature.	639 

Within	each	feature	c,	there	are	a	fixed	but	unknown	number	of	classes;	Sc	represented	640 

in	the	experiment.	Within	the	feature,	these	are	represented	with	relative	proportions	641 

pC, … , pIJ, pK

IJ

KLC

= 1	642 

If	we	are	interested	in	the	relative	proportions	within	the	experiment,	we	multiply	the	643 

relative	proportion	within	the	feature	by	the	relative	abundance	of	the	feature	within	the	644 

experiment.	645 

The	problem	is	that	we	only	have	information	on	the	classes	that	were	sequenced	in	the	646 

experiment.	We	observed	𝐷G ≤ 𝑆G	classes	with	observed	frequencies	xK	=	#	reads	from	647 

class	i	with	 𝑥R
ST
RLC = 𝑁G 	and	 𝑁V = 𝑁G

VLC .		648 

The	problem	of	estimating	the	complexity	is	to	estimate	the	number	of	expected	distinct	649 

classes	observed	as	a	function	of	reads	sequenced.	We	use	the	non-parametric	empirical	650 

Bayesian?	approach	of	Daley	and	Smith	12	to	estimate	the	feature	complexity	curve.	The	651 

limit	of	the	feature	complexity	curve	can	be	regarded	as	an	estimate	of	the	feature	size	652 
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16.	653 

The	 discovery	 probability	 of	 the	 observed	 experiment	 is	 the	 sum	 of	 the	 relative	654 

proportions	of	the	unobserved	classes,	655 

𝒑𝒊𝟏(𝒙𝒊 = 𝟎)
𝑺𝒄

�L𝟏

.	656 

The	 non-parametric	 empirical	 Bayes	 estimator	 for	 this	 quantity	 is	 given	 by	 the	 Good	657 

Turing	formula,	( C _`LC
aT

Sb
RLC ).	658 

Read	Complexity	Analysis	659 

We	first	examine	the	read	complexity	as	determined	by	the	mapped	start	position	of	the	660 

first	end	in	the	read	pair.	We	observe	little	difference	between	the	two	libraries	for	the	661 

single	end	complexity	(Supplemental	Methods	Figure	SM3).	We	observe	only	an	average	662 

of	 20%	 and	 29%	of	 the	 reads	 that	 can	 be	mapped	 at	 the	 sequenced	 read	 depth.	We	663 

estimate	that	all	libraries	are	an	average	of	58%	saturated;	that	is,	we	observed	58%	of	664 

the	abundance.	This	 is	natural	since	one	would	naturally	sequence	the	most	abundant	665 

reads	first.	666 
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	667 

Supplemental	 Methods	 Figure	 SM3.	 Single	 end	 read	 complexity	 medians	 and	668 

interquartile	ranges	across	the	two	library	preparations.	669 

	670 

Annotated	Feature	Complexity	Analysis	671 

The	mapped	reads	can	be	assigned	to	features	within	the	genome.	These	include	exons,	672 

introns,	coding	sequences	(CDS),	and	untranslated	regions	(UTR).	In	this	section	we	shall	673 

investigate	the	complexity	of	these	features,	which	can	be	interpreted	as	estimating	the	674 
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transcriptional	diversity	within	these	libraries.		675 

As	expected,	more	exons,	CDSs,	and	UTRs	were	observed	per	sequenced	fragment	for	the	676 

polyA	libraries	than	for	the	totalRNA	libraries.	Yet	all	libraries	are	very	saturated.	Most	of	677 

the	 abundant	 classes	 within	 these	 features	 have	 already	 been	 observed,	 and	 the	678 

unobserved	 features	 are	 extremely	 rare.	 This	 is	 in	 line	 with	 the	 common	 practice	 of	679 

sequencing	a	few	tens	of	millions	of	reads	for	inferring	differential	expression.		680 

		681 

To	compare	the	saturation	across	libraries,	we	extrapolated	the	saturation	to	a	common	682 

value.	The	saturation	is	asymptotically	normal	17,	and	the	sequencing	depth	is	sufficiently	683 

high	that	we	can	use	a	standard	t-test	to	investigate	differences.	The	polyA	libraries	are	684 

more	saturated	when	all	the	features	for	all	libraries	are	extrapolated	out	to	100	million	685 

observations	 (exons:	 p	 =	 3.764E-16;	 CDS:	 p	 =	 1.036E-14;	 UTR:	 p	 =	 5.183E-14;	 more	686 

significant	differences	were	observed	at	lower	depths,	indicating	that	the	differences	are	687 

not	artifacts	of	the	sampling	depth).		688 

	689 

Despite	the	large	saturation	for	all	features	across	libraries,	a	multitude	of	unobserved	690 

classes	 remain	 (Supplemental	 Methods	 Table	 SM7).	 This	 means	 that	 most	 of	 the	691 

unobserved	 classes	 are	 exceedingly	 rare.	 For	 example,	we	 estimate	 that	 there	 are	 an	692 

average	of	41,990	unobserved	exons	in	the	polyA	libraries.	There	is	an	average	remaining	693 

abundance	 of	 1 − 0.9988 = 0.0012 ,	 implying	 that	 the	 average	 abundance	 of	 the	694 

unobserved	exons	is	f.ffC+
gChhf

= 2.86	𝐸 − 8.	Since,	on	average,	a	read	has	2 ∙ 0.176 = 0.352	695 

probability	of	overlapping	an	exon,	the	average	abundance	of	the	unobserved	exons	is	696 
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1E-8	 and	 the	 total	 abundance,	 0.00042,	 gives	 the	 marginal	 probability	 that	 the	 next	697 

sequenced	read	is	a	new	exon.	For	the	totalRNA	libraries,	the	average	abundance	of	the	698 

unobserved	 exons	 is	 3.2E-8.	 Similarly,	 we	 calculated	 the	 average	 abundance	 of	 the	699 

unobserved	CDS	for	polyA	and	totalRNA	libraries	as	1.84E-8	and	7.78E-8,	respectively,	and	700 

for	UTRs	it	was	1.1E-8	and	6.48E-8.	701 

	702 

Featur

e	

Mean	hits	 Mean	observed	 Mean	saturation	
Mean	estimated	

total	

polyA	
totalRN

A	
polyA	

totalRN

A	
polyA	

totalRN

A	
polyA	

totalRN

A	

Exons	

10310521	 110553	 0.9969	 145950	

1771336

2	

574543

6	

11550

7	
107498	 0.9988	 0.9956	

15749

7	
138829	

CDS	

4791394	 105820	 0.984	 131521	

8804113	
231688

4	

11606

8	
99500	 0.9977	 0.9756	

14406

2	
123788	

UTR	

4359596	 33165	 0.9948	 43136	

8035082	
209304

7	
37448	 30524	

0.9991

3	

0.9920

9	
49849	 38997	

	703 

Supplemental	Methods	Table	SM7.	Mean	number	of	observations,	distinct	observed	704 

classes,	observed	saturation,	and	estimated	total	number	of	classes	for	exons,	CDS,	and	705 
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UTR	Features.		706 

	707 

Finally,	we	examined	differences	of	diversity	between	case	and	controls	for	a	fixed	tissue	708 

type	and	library	type.	The	results	are	quite	anticlimactic,	as	we	found	little	differences	709 

between	 cases	 and	 controls	 for	 extrapolated	 saturation	 and	 feature	 diversity.	 This	710 

indicates	 that	 there	 are	 little	 differences	 in	 transcriptome	 diversity	 between	 the	 two	711 

groups	of	case	and	controls.	Alternatively,	it	may	indicate	that	the	differences	between	712 

the	two	groups	are	so	small	that	a	much	larger	cohort	is	required	to	accurately	infer	the	713 

disparity.	714 

	715 

	716 

Genomic	profiles	across	library	preparation	protocols	717 

Similar	 to	 Li,	 S.	 et	 al.	we	observed	 that	 library	preparation	has	 a	 strong	effect	 on	 the	718 

fraction	 of	 both	mapped	 and	 lost	 human	 reads	mapping	 to	 CDS	 and	 intronic	 regions.	719 

Genomic	profile	of	mapped	and	unmapped	reads	across	library	preparation	protocols	is	720 

presented	in	Supplemental	Methods	Figure	SM4.		721 



	 44	

	722 

	723 

Supplemental	Methods	Figure	SM4.	Genomic	profile	of	mapped	and	lost	human	reads	724 

across	poly(A)	enrichment	and	ribo-depletion	libraries.	725 

(A)	RNA-Seq	samples	were	prepared	by	poly(A)	enrichment	protocol	(n=38).	(B)	RNA-Seq	726 

samples	 were	 prepared	 by	 ribo-depletion	 protocol	 (n=49).	Mapped	 human	 reads	 are	727 

identified	 as	 RNA-Seq	 reads	 that	 mapped	 to	 the	 human	 reference	 genome	 and	728 

transcriptome	(ENSEMBL	hg19	build,	ENSEMBL	GRCh37	transcriptome)	via	tophat2.	Lost	729 

human	reads	are	unmapped	RNA-Seq	reads	that	aligned	to	the	human	reference	genome	730 

and	 transcriptome	 (ENSEMBL	 hg19	 build,	 ENSEMBL	 GRCh37	 transcriptome)	 via	 more	731 

sensitive	Megablast	alignment.	Single	alignment	is	reported	for	each	read	by	Megablast.	732 

ROP	categorizes	 the	reads	 into	genomic	categories	based	on	the	compatibility	of	each	733 

A.	poly(A)	 enrichment (n=38) B.	Ribo-depletion	 (n=49)
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read	 from	 the	 pair	 with	 the	 features	 defined	 by	 the	 Ensembl	 gene	 annotations.	734 

Percentages	are	calculated	as	a	fraction	of	reads	from	a	category	from	the	total	number	735 

of	mapped	or	lost	human	reads.	Junction	read	is	defined	as	a	read	spanning	exon-exon	736 

boundary;	CDS,	UTR3,	UTR5:	 reads	overlapping	CDS,	UTR3	or	UTR5	region;	UTR:	 reads	737 

simultaneously	overlapping	UTR3	and	UTR5	regions;	intronic:	reads	overlapping	intronic	738 

regions;	intergenic:	reads	mapped	within	the	proximity	of	1Kb	from	the	gene	boundaries;	739 

deep	intergenic:	reads	mapped	beyond	the	proximity	of	1Kb	from	the	gene	boundaries;	740 

MT:	 mitochondrial	 reads;	 multi-mapped:	 reads	 mapped	 to	 multiple	 locations	 of	 the	741 

human	genome;	fusion:	reads	from	the	read	pair	mapped	to	different	chromosomes.		742 

	743 
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Genomic	 profile	 across	 tissue	 types	 and	 library	 preparation	 methods	 in	 S1.	 Genomic	744 

Profile	is	obtained	based	on	both	mapped	and	lost	human	RNA-Seq	reads.	745 

746 

	747 

	748 

Tissue Whole	blood Nasal	epithelium Lung	epithelium
N	 19 19 49
Library	preparation	method poly(A)	enrichment	 poly(A)	enrichment	 ribo-depletion
	Splice	junction	reads,	%*,	mean	(std) 23.3%	(3.3%) 29.8%	(2.2%) 10.0%	(3.3%)
CDS	reads	%,	mean	(std) 18.0%	(3.1%) 16.9%	(	1.3%) 6.9%	(2.0%)
UTR3	reads	%,	mean	(std) 15.6%	(3.1%) 22.5%	(1.7%) 11.4%	(2.5)
UTR5	reads		%,	mean	(std) 3.2%	(0.7%) 2.2%	(0.3%) 2.6%	(0.7%)
UTR**	reads	%,	mean	(std) 4.3%	(0.8%) 5.9%	(0.5%) 1.9%	(0.6%)
Intronic	reads	%,	mean	(std) 5.6%	(1.6%) 4.4%	(0.8%) 39.4%	(6.5%)
Proximate	inter-genic***	reads	%,	mean	(std) 1.2%	(0.6%) 1.5%	(0.6%) 3.3%	(0.4%)
Deep	inter-genic	reads****	%,	mean	(std) 0.3%	(0.1%) 0.3%	(0.1%) 2.8%	(0.9%)
Mitochondrial	(MT)	reads	%*,	mean	(std) 2.3%	(1.0%) 4.3%	(1.3%) 1.5%	(1.8%)
Milti-mapped	reads	%,	mean	(std) 10.6%	(2.4%) 1.9%	(0.2%) 1.9%	(0.5%)
Fusion	reads	%,	mean	(std) 0.2%	(0.1%) 0.4	%	(0.1%) 0.7%	(0.2%)

Notes	:
*	percentage	from	the		total	number	of	reads	are	reported	
**	reads	simultaneously	overlapping	UTR3	and	UTR5	regions
***	mapped	with	the	1K	proximity	from	gene	boundaries

A.	Genomic	profile	obtained	based	on	mapped	RNA-Seq	reads.	Mapped	human	reads	are	identified	as	the	RNA-Seq	reads	
mapped	to	the	reference	genome	and	transcriptome	(ENSEMBL	hg19	build,	ENSEMBL	GRCh37	transcripome)		via	tophat2.

Supplementary	Table	2.	Genomic	profile	across	tissues	types	and	library	preparation	methods.	Genomic	profile	is	obtained	based	on	
both	mapped	and	lost	human	RNA-Seq	reads

****	mapped	further	then	1K	from	the	gene	boundaries

Tissue Whole	blood Nasal	epithelium Lung	epithelium
N	 19 19 49
Library	preparation	method poly(A)	enrichment	 poly(A)	enrichment	 ribo-depletion
	Splice	junction	reads,	%*,	mean	(std) 1.5% (0.5%) 0.7%	(0.1%) 0.6%	(0.2%)
CDS	reads	%,	mean	(std) 1.9%	(0.7%) 0.7%	(0.1%) 0.7%	(0.2%)
UTR3	reads	%,	mean	(std) 1.3%	(0.3%) 0.9%	(0.1%) 1.1%	(0.2%)
UTR5	reads		%,	mean	(std) 0.4%	(0.1%) 0.2%	(0.03%) 0.3%	(0.1%)
UTR**	reads	%,	mean	(std) 0.4%	(0.1%) 0.2%	(0.1%) 0.2%	(0.1%)
Intronic	reads	%,	mean	(std) 1.0%	(0.4%) 1.3%	(	1.1%) 5.9%	(3.1%)
Proximate	inter-genic***	reads	%,	mean	(std) 0.6%	(0.4%) 1.0%	(1.1%) 2.1%	(2.5%)
Deep	inter-genic	reads****	%,	mean	(std) 0.2%	(0.1%) 0.3%	(0.3%) 0.7%	(0.4%)
Mitochondrial	(MT)	reads	%*,	mean	(std) 0.0%	(0.0%) 0.0%	(0.0%) 0.0%	(0.0%)

Notes	:
*	percentage	from	the	total	number	of	reads	are	reported	
**	reads	simultaneously	overlapping	UTR3	and	UTR5	regions
***	mapped	with	the	1K	proximity	from	gene	boundaries
****	mapped	further	than	1K	from	the	gene	boundaries

B.	Genomic	profile	obtained	based	on	lost	human	reads.		Lost	human	reads	are	the	unmapped	RNA-Seq	reads	that	
aligned	to	the	human	reference	genome	and	transcriptome	(ENSEMBL	hg19	build,	ENSEMBL	GRCh37	transcripome)	via	
more	sensitive	Megablast	alignment.		
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Repeat	profile	across	tissues	types	and	library	preparation	methods.		749 

Repeat	 profile	 is	 based	 on	 both	 mapped	 and	 lost	 repeat	 reads.750 

	751 

	752 

	753 

Tissue Whole	blood Nasal	epitheliumLung	epithelium
N	 19 19 49

Library	preparation	method
poly(A)	

enrichment	
poly(A)	

enrichment	 ribo-depletion
L1,	%*,	mean 0.4% 0.5% 5.5%
L2,	%,	mean 0.2% 0.2% 1.0%
CR1,	%,	mean 0.02% 0.01% 0.1%
Alu,	%,	mean 1.0% 1.0% 2.5%
MIR,	%,	mean 0.1% 0.1% 0.6%
ERVL-MaLR,	%,	mean 0.2% 0.2% 1.1%
ERV1,	%,	mean 0.2% 0.2% 0.8%
ERVK,	%,	mean 0.0% 0.0% 0.1%
ERVL,	%,	mean 0.1% 0.1% 0.5%
RNA,	%,	mean 0.0% 0.0% 0.2%
hAT-Charlie,	%,	mean 0.1% 0.1% 0.4%
TcMar-Tigger,	%,	mean 0.04% 0.1% 0.5%
Others,	%,	mean 0.05% 0.1% 0.3%

*	Percentage	from	the	total	number	of	reads

Supplementary	Table	3.	Repeat	profile	across	tissues	types	and	library	preparation	methods.	Repeat	profile	is	obtained	based	on	
both	mapped	and	lost	repeat	reads

A.	Repeat	profile	obtained	based	on	mapped	RNA-Seq	reads.	Mapped	reads	were	categorized	based	on	the	overlap	with	
the	repeat	instances	prepared	from	RepeatMasker	annotation	(Repeatmasker	v3.3,	Repeat	Library	20120124).		

Tissue Whole	blood Nasal	epitheliumLung	epithelium
N	 19 19 49

Library	preparation	method
poly(A)	

enrichment	
poly(A)	

enrichment	 ribo-depletion
%,	mean*
hAT,	mean 0.0001% 0.0004% 0.0000%
TcMar-Mariner,	mean 0.0001% 0.0005% 0.0001%
TcMar-Tigger,	mean 0.0001% 0.0015% 0.0001%
L1,	mean 0.0045% 0.1409% 0.0048%
ERVK,	mean 0.0002% 0.0026% 0.0001%
ERV,	mean 0.0017% 0.0082% 0.0014%
ERV1,	mean 0.0025% 0.0106% 0.0016%
ERVL,	mean 0.0000% 0.0014% 0.0000%
Satellite,	mean 0.0001% 0.0006% 0.0000%
Alu,	mean 0.0495% 0.0896% 0.0382%
Deu,	mean 0.0001% 0.0024% 0.0001%
Others,	mean 0.0051% 0.0072% 0.0025%

*Percentage	from	the	total	number	of	reads

B.	Repeat	profile	obtained	based	on	lost	repeat	reads.		Lost	human	reads	are	the	unmapped	RNA-Seq	reads	that	aligned	
to	human	reference	genome	and	transcriptome	(ENSEMBL	hg19	build,	ENSEMBL	GRCh37	transcripome)	via	more	
sensitive	Megablast	alignment.		



	 48	

	754 



	 49	

	755 

Supplemental	 Methods	 Figure	 SM5..	 Percentage	 of	 immune	 reads	 mapped	 to	 B-cell	756 

receptor	(BCR)	and	T-cell	receptor	(TCR)	loci.		757 

(A)	RNA-Seq	samples	were	prepared	by	poly(A)	enrichment	protocol	(whole	blood	and	758 

nasal	epithelium).	(B)	RNA-Seq	samples	were	prepared	by	ribo-depletion	protocol	(lung	759 

epithelium).	Immune	reads	that	are	entirely	mapped	to	BCR	and	TCR	genes	are	identified	760 

by	 tophat2.	 Immune	 reads	 with	 extensive	 somatic	 hyper	mutations	 (SHM)	 and	 reads	761 

arising	from	V(D)J	recombination	are	identified	by	IgBLAST.	Blood	samples	show	a	larger	762 

fraction	of	reads	mapped	to	BCR	locus,	while	nasal	and	lung	epithelium	samples	show	a	763 

larger	fraction	of	reads	mapped	to	TCR	locus.	BCR	are	composed	of	heavy	(IGH)	and	light	764 

chains.	 Among	 the	 reads	 mapped	 to	 BCR	 locus,	 the	 number	 of	 reads	 mapped	 to	765 
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immunoglobulin	 heavy	 locus	 (IGH),	 immunoglobulin	 kappa	 locus	 (IGK),	 and	766 

immunoglobulin	 lambda	 locus	 (IGL)	 is	 determined.	 Among	 the	 reads	 mapped	 to	 TCR	767 

locus,	the	number	of	reads	mapped	to	T	cell	receptor	alpha	locus	(TCRA),	T	cell	receptor	768 

beta	 locus	 (TCRB),	T	cell	 receptor	gamma	locus	 (TCRG),	and	T	cell	 receptor	delta	 locus	769 

(TCRD)	is	determined.		770 
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	771 

Supplemental	Methods	 Figure	 SM6.	 Percentage	 of	 immune	 reads	mapped	 to	 genes	772 

encoding	the	constant	region	of	immunoglobulin	heavy	locus	(IGH).		773 

(A)	RNA-Seq	samples	were	prepared	by	poly(A)	enrichment	protocol	(whole	blood	and	774 

nasal	epithelium).	(B)	RNA-Seq	samples	were	prepared	by	ribo-depletion	protocol	(lung	775 

epithelium).	 Immune	 reads	 that	 are	entirely	mapped	 to	 IGHA	 (Immunoglobulin	Heavy	776 

Constant	Alpha),	IGHD	(Immunoglobulin	Heavy	Constant	Delta),	IGHG	(Immunoglobulin	777 

Heavy	 Constant	 Gamma),	 IGHE	 (Immunoglobulin	 Heavy	 Constant	 Epsilon),	 and	 IGHM	778 

(Immunoglobulin	Heavy	Constant	Mu)	are	identified	by	tophat2.		779 
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	780 

	781 

	782 

	783 

Number	of	RNA-Seq	reads	mapped	to	BCR	and	TCR	genes	(immune	reads).		784 

Reads	 entirely	mapped	 to	 BCR	 and	 TCR	 genes	 are	 identified	 by	 Tophat2.	 Reads	 with	785 

extensive	somatic	hyper	mutations	(SHM)	and	reads	arising	from	V(D)J	recombination	are	786 

identified	by	IgBLAST.		787 

	788 

	789 

	790 

Tissue Whole	blood Nasal	epithelium Lung	epithelium
N	 19 19 49

Library	preparation	method poly(A)	enrichment	 poly(A)	enrichment	 ribo-depletion
Number	of	immune	reads	(tophat2),	RPM,	mean 4805 107 16
Number	of	immune	reads	(IgBlast),		RPM,	mean 270 7 1
Total	number	of	immune	reads	,	RPM,	mean										 5075 114 17

RPM	:	reads	per	million

Supplementary	Table	5.	Number	of	RNA-Seq	reads	mapped	to	BCR	and	TCR	genes	(immune	reads).		Reads	entirely	
mapped	to	BCR	and	TCR	genes	are	identified	by	tophat2.	Reads	with	extensive	somatic	hyper	mutations	(SHM)	
and	reads	arising	from	V(D)J	recombination	are	identified	by	IgBlast.	
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List	of	software	tools	used:	791 

Tophat2	v.2.0.13	-	http://ccb.jhu.edu/software/tophat/index.shtml		792 

STAR	v2.5.2b	-	https://github.com/alexdobin/STAR	793 

Bowtie	v.0.12.9	-	http://bowtie-bio.sourceforge.net/index.shtml		794 

Bowtie2	v.2.2.9	-	http://bowtie-bio.sourceforge.net/bowtie2/index.shtml		795 

Samtools	v.0.1.18	-	http://www.htslib.org/		796 

Bamtools	v.2.3.0	-	https://github.com/pezmaster31/bamtools		797 

FASTX-Toolkit	v.0.0.13	-	http://hannonlab.cshl.edu/fastx_toolkit/		798 

SEQLEAN	v(seqclean-x86_64)	-	http://sourceforge.net/projects/seqclean/files/		799 

BLAST+	v.2.2.30	-	ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/		800 

IgBLAST	v.1.4.0-	http://www.ncbi.nlm.nih.gov/IgBLAST/		801 

TopHat-Fusion	v.2.0.13-	http://ccb.jhu.edu/software/tophat/fusion_index.shtml		802 

circExplorer2	v.2.2.4	-	http://circexplorer2.readthedocs.io/		803 

MetaPhlAn2	v.2.0	-	http://huttenhower.sph.harvard.edu/metaphlan		804 

HTSeq	v.0.6.1	-	http://www-huber.embl.de/users/anders/HTSeq/		805 

Preseq	v	2.0-	http://smithlabresearch.org/software/preseq/	806 

Quicksect	v.0.0.2	-	https://github.com/brentp/quicksect		807 

	808 

	809 
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Databases	810 

Ensembl	hg19	-	http://www.ensembl.org/Homo_sapiens/Info/Index		811 

Human	 ribosomal	 DNA	 complete	 repeating	 unit	 -812 

http://www.ncbi.nlm.nih.gov/nuccore/U13369		813 

GTF	 formatted	 file	 for	 repeat	 annotations-	814 

http://labshare.cshl.edu/shares/mhammelllab/www-815 

data/TEToolkit/TE_GTF/hg19_rmsk_TE.gtf.gz		816 

Repeat	elements	(RepBase20.07)	–	http://www.girinst.org/repbase/	817 

V(D)J	genes	of	B	and	T	cell	receptor	-	http://www.imgt.org/vquest/refseqh.html#V-D-J-C-818 

sets		819 

Database	of	viral	genomes:	http://ftp.ncbi.nlm.nih.gov/genomes/Viruses		820 

Database	of	bacterial	genomes:	http://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/	821 

Database	of	eukaryotic	pathogens	-	http://eupathdb.org/eupathdb/		822 

	823 
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